Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3959-3973, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297605

RESUMO

A procedure for automated low uncertainty assessment of empty cavity mode frequencies in Fabry-Pérot cavity based refractometry that does not require access to laser frequency measuring instrumentation is presented. It requires a previously well-characterized system regarding mirror phase shifts, Gouy phase, and mode number, and is based on the fact that the assessed refractivity should not change when mode jumps take place. It is demonstrated that the procedure is capable of assessing mode frequencies with an uncertainty of 30 MHz, which, when assessing pressure of nitrogen, corresponds to an uncertainty of 0.3 mPa.

2.
Nat Commun ; 15(1): 161, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167498

RESUMO

Accurate parameters of molecular hot-band transitions, i.e., those starting from vibrationally excited levels, are needed to accurately model high-temperature spectra in astrophysics and combustion, yet laboratory spectra measured at high temperatures are often unresolved and difficult to assign. Optical-optical double-resonance (OODR) spectroscopy allows the measurement and assignment of individual hot-band transitions from selectively pumped energy levels without the need to heat the sample. However, previous demonstrations lacked either sufficient resolution, spectral coverage, absorption sensitivity, or frequency accuracy. Here we demonstrate OODR spectroscopy using a cavity-enhanced frequency comb probe that combines all these advantages. We detect and assign sub-Doppler transitions in the spectral range of the 3ν3 ← ν3 resonance of methane with frequency precision and sensitivity more than an order of magnitude better than before. This technique will provide high-accuracy data about excited states of a wide range of molecules that is urgently needed for theoretical modeling of high-temperature data and cannot be obtained using other methods.

3.
Opt Express ; 30(14): 25891-25906, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237109

RESUMO

A procedure is presented for in situ determination of the frequency penetration depth of coated mirrors in Fabry-Perot (FP) based refractometers and its influence on the assessment of refractivity and pressure. It is based on assessments of the absolute frequency of the laser and the free spectral range of the cavity. The procedure is demonstrated on an Invar-based FP cavity system with high-reflection mirrors working at 1.55 µm. The influence was assessed with such a low uncertainty that it does not significantly contribute to the uncertainties (k = 2) in the assessment of refractivity (<8 × 10-13) or pressure of nitrogen (<0.3 mPa).

4.
Phys Rev Lett ; 126(6): 063001, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635699

RESUMO

We report the first measurement of sub-Doppler molecular response using a frequency comb by employing the comb as a probe in optical-optical double-resonance spectroscopy. We use a 3.3 µm continuous wave pump and a 1.67 µm comb probe to detect sub-Doppler transitions to the 2ν_{3} and 3ν_{3} bands of methane with ∼1.7 MHz center frequency accuracy. These measurements provide the first verification of the accuracy of theoretical predictions from highly vibrationally excited states, needed to model the high-temperature spectra of exoplanets. Transition frequencies to the 3ν_{3} band show good agreement with the TheoReTS line list.

5.
Opt Lett ; 45(7): 1914-1917, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236031

RESUMO

We experimentally demonstrate in a difference-frequency generation mid-infrared frequency comb source the effect of temporal overlap between pump and signal pulses on the relative intensity noise (RIN) of the idler pulse. When scanning the temporal delay between our 130 fs long signal and pump pulses, we observe a RIN minimum with a 3 dB width of 20 fs delay and a RIN increase of 20 dB in 40 fs delay at the edges of this minimum. We also demonstrate active long-term stabilization of the mid-infrared frequency comb source to the temporal overlap setting corresponding to the lowest RIN operation point by an online RIN detector and active feedback control of the pump-signal pulse delay. This active stabilization setup allows us to dramatically increase the signal-to-noise ratio of mid-infrared absorption spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...